If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+16p=0
a = 2; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·2·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*2}=\frac{-32}{4} =-8 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*2}=\frac{0}{4} =0 $
| y^2+5y-126=0 | | (√2n+5)=n+1 | | 0,5x=480 | | y^2+5y-1113=0 | | x+18=x*3 | | a/8=24 | | -4+6k=14 | | 4x2-5x-10=0 | | 4(−15−3p)=−4(−p+5) | | (4x-5)(x+1)=8 | | 74y-y^2-1113=0 | | 10^x=1/x | | 6(x-6)=(x+3) | | 10=5b25 | | 51y-y^2-518=0 | | |7m|=49 | | −33=f/−3 | | 8+4x/2=10 | | 1.2y+(-0.7)=7.1 | | −33=f/−3 | | −33=f/−3 | | w+3.92=6.84 | | 82-(y*82)=65.60 | | -x+16x=60 | | 1x+11=9 | | 1=11w+3 | | 36=a-3/2 | | Y^1/3-2y^2/3=15 | | 8+4x+6x=98 | | 2x+3-4x=3(x+10) | | x/5+2x/3+x=22 | | 7x^2=-7x |